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Abstract. Various ways of generalizing the concept of maximum overlap or Brueckner orbitals
(BOs), which are defined in single-reference (SR) state formulations of many-electron theory, to
the case of multi-reference (MR) state approaches are proposed. These generalizations can be
classified into two categories. The first one consists of orbitals that yield the maximum proximity
of the model space,M0, spanned byd-determinants constructed from the orbitals considered and
the target space,M, spanned by the set ofd exact wavefunctions of interest in the MR approach.
Due to the fact that there are many proximity criteria, the first category includes various maximum
proximity orbitals (MPOs). The second category includes the set of orbitals (MR-BOs) which
satisfy the generalized Brueckner condition (the requirement is that in the configuration-interaction
expansion of the exact wavefunctions in the intermediate normalization there are no singly-excited
configurations). Interesting relationships between various MPO-type sets, as well as between MPO
and MR-BOs sets, have been disclosed. It has been shown that there exists such a proximity measure
of M andM0 that the orbitals maximizing it simultaneously satisfy the generalized Brueckner
condition. These orbitals seem to provide the most satisfactory MR generalization of the BOs. To
illustrate the detailed structure of the various orbital sets considered and to test the sensitivity of
various proximity measures results of calculations for the H4 model are presented and discussed.

1. Introduction

There are at least two reasons why one-particle functions (orbitals) belong to the basic
concepts of modern many-electron theories of atomic and molecular systems. First, for purely
theoretical reasons, the choice of orbitals defines independent particle models (IPMs) which
are employed for the description of states of these systems either independently or as the
starting approximations in more accurate approaches, that eliminate the errors present in this
model. Second, for formal and computational reasons, the choice of the orbitals determines
the detailed structure of individual theoretical approaches and may have crucial impact on their
accuracy as well as the efficiency of their computational implementations. Since the inception
of many-electron theories by far the most important role has been played by the Hartree–Fock
(HF) orbitals [1] which are defined when using the best-energy criterion for the wavefunction
of the IPM.

A very interesting IPM has been defined in terms of orbitals obtained from the requirement
that the determinantal wavefunction8B , corresponding to the exact wavefunction9, is such
that

‖9 −8B‖ = min for ‖9‖ = ‖8B‖ = 1 (1)

or, equivalently, that the overlap of these functions is maximum, i.e.,

〈8B |9〉 = max. (2)
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The first explicit use of condition (1) for the definition of the one-particle wavefunctions
can be found in the work of Brenig [2] who was concerned with the problem of generalizing
to finite nuclear systems Brueckner’s self-consistent field approach, formulated for infinitely
extended nuclear matter in terms of two-particle reaction operators (see, e.g., [3]). Brenig also
found that determinants8r

a obtained by single substitutions of the single-particle functionsϕa
from the set defining the optimum determinant8 by an orbitalϕr orthogonal to any function
of this set are orthogonal to the exact wavefunction, i.e.,

〈8r
a|9〉 = 0 for 06 a 6 N < r (3)

whereN is the number of particles.
The orbitals satisfying the conditions (1)–(3) are referred to as Brueckner orbitals (BO)

or maximum overlap orbitals.
The IPM considered has been assimilated by the many-electron theory mainly due to the

work of Nesbet [4] who reformulated the configuration interaction (CI) approach in such a
way that it resembles, as far as possible, Brueckner’s formulation [3]. To achieve his aim
he imposed on the orbital set, the condition (3), which he called the ‘Brueckner condition’.
Notice that this condition eliminates the singly exited configurations from the configuration
interaction (CI) expansion of the exact wavefunction. Further impetus to work in this field was
due to L̈owdin [5] and Kutzelnigg and Smith [6]. Palduset al[7] derived stability conditions for
maximum-overlap independent-particle wavefunctions and applied them to theπ -electronic
model.

Since the determination of the BOs requires the knowledge of the exact wavefunction,
it would seem that they are of more theoretical than practical interest. In fact, they turned
out to be especially useful in studies of the detailed structure of the terms of the wavefunction
representing various correlation effects. However, over the years there have been computational
methods developed implying the use of BOs, e.g., Larsson [8] and Stolarczyk and Monkhorst
[9] proposed obtaining these orbitals from HF-type equations modified by a ‘correlation’
potential. An interesting field of practical applications of BOs seem to be the coupled-cluster
(CC) methods [10, 11]. Theoretical [9] and computational [12] CC studies of the applicability
of these orbitals have been performed by several groups. Recently Handyet al [13] have put
forward and applied a promising CC-type approach based on the use of BOs.

So far we have been concerned with methods concentrating on the description of one state
at a time, i.e., both the maximum overlap determinant8 and the BOs are defined for one exact
wavefunction9. Moreover, it is implicitly assumed that the CI-expansion of this wavefunction
is dominated by a single determinant. States corresponding to these wavefunctions are well
described in terms of single-reference (SR) state methods of variational, perturbational and
CC type.

However, for a large class of states known as quasi-degenerate ones, the CI-expansion
of the wavefunction contains more than one important configuration. The description of the
electron correlation effects in such states by means of SR methods encounter various difficulties
which can be, to a large extent, overcome within the framework of multi-reference (MR) state
formulations of perturbational (for details and references, see, e.g., [14–17]) and CC-type (see
[15, 18–21] and references therein) methods. The MR methods are concerned with several
states at the same time. To formulate such methods one starts with amodel space, M0,
spanned by a set ofd Slater determinants8i , including the dominant configurations of the
states considered and defines a wave operator,�, which generates a set ofd exact normalized
wavefunctions9i by acting upond suitable linear combinations,9(0)

i of the8i determinants,
i.e.,

9i = �9(0)
i (i = 1, 2, . . . , d) (4)
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where

9
(0)
i =

d∑
k=1

cik8k. (5)

The space,M, spanned by thed exact wavefunctions9i is referred to astarget space[16].
We recently [22] proposed methods for the quantitative description of the model and

target spaces employed in MR formulation. One of these methods was employed to define
a generalization to the MR case of the concept of BOs, i.e., orbitals corresponding to the
maximum proximity of the pairs of subspaces considered. These orbitals are referred to as
maximum overlap orbitals(MPO) [22]. To better understand the impact of the distance of
theM0 andM spaces on MR-type approaches, model studies have been undertaken for the
minimum basis set (MBS) H4 system, which offers the possibility of a simple parametrization
of arbitrary symmetry-adapted orbital sets [22]. It has been demonstrated that if MPOs are
applied in calculations based on MR-CC approaches of valence-universal or state-universal
types, results superior to those for HF orbitals are obtained. This improvement is especially
evident outside the strong quasi-degeneracy region.

Due to the freedom of choosing criteria for describing the proximity of theM0 and
M spaces, the MPOs represent just one of the many possibilities of defining generalized
BOs. When proceeding from the MR to the SR case, all generalized BOs become identical
to the standard ones. Note that the criteria employed for defining these orbitals can be
considered as MR generalizations of the conditions given by equations (1) or (2). None
of these criteria is directly related to the Brueckner condition (3), which eliminates the singly
excited configuration from the CI expansion of the exact wavefunctions. Hence, it might be
interesting to define BOs not based on proximity criteria, but rather on an MR generalization
of the Brueckner condition. We discuss this possibility below. Let us mention that hints for
using the Brueckner condition for constructing BOs for more general states can be found in
the work of Lindgren [15, 23], who has indicated the possibility of constructing approximate
BOs from the requirement that the contributions from certain diagrams of his MR perturbation
method corresponding to single excitations, vanish. This idea has been applied in calculations
of approximate BOs for systems with a single valence electron [23]. This restriction of the
number of the valence electrons means that the problem is essentially a SR one and genuine
MR aspects do not emerge.

The object of this paper is to try to compare various types of generalized BOs for MR
theories. This will be performed in two stages. At the first stage, we would like to get an idea
about the differences of the BOs obtained when using various definitions of the proximity of
the model and target spaces as well as the generalized Brueckner condition. This comparison
is based on results of numerical calculations for the H4 model [24]. This model has been
employed by several authors (for references, see, e.g., [25]) for studying the performance and
reliability of various methods of many-electron theory. An important feature of this model is
that one can specify arbitrary symmetry-adapted orbital sets by means of two parameters [25],
which makes the determination of the generalized BOs a relatively simply task.

At the second stage, we would like to establish the relationship between the BOs obtained
when using various maximum proximity criteria with those obtained from the generalized
Brueckner condition.
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2. Theoretical and calculational aspects

2.1. Multi-reference state generalizations of BOs

As already stated, the MR generalizations of BOs can be classified into two categories: the
first consists of various orbitals obtained from some proximity criteria for the model and target
spaces. The second category consists of the orbital set obtained from requirement of satisfying
the generalized Brueckner condition.

Let us start with the first category. As shown before [26], the proximity of two subspaces
spanned by the basis sets{8i}di=1 and{9i}di=1 can be characterized in terms ofMi-numbers
which are defined as

Mi = √vi (6)

wherevi , i = 1, . . . , d, are the eigenvalues of the matrix

V = M†M (7)

andM denotes the mixed-overlap matrix defined as

Mij = 〈8i |9j 〉. (8)

We are concerned with the case of non-orthogonal pairs of subspaces for which [26]

0< vi 6 1 and 0< Mi 6 1. (9)

One of the possible proximity measures is given by the quantity

D0 = d−1
d∑
i=1

M2
i = d−1 Tr(M†M). (10)

SinceD0 represents the trace of the matrixV , one obtains

D0 = d−1 Tr(M†M) = d−1
∑
i,k

|〈8k|9i〉|2. (11)

Moreover, from (9), we haveD0 6 1.
We recently [22] defined MR generalizations to the BOs as such orbital sets that maximize

the proximity ofM0 andM. The detailed form of these orbitals depends on the proximity
measure chosen. In our previous paper [22] we defined the proximity ofM0 andM using the
indexD̃0 = dD0 defined by equation (10). The set of orbitals obtained from the requirement

D̃0 = max (12)

being referred to as maximum proximity orbitals (MPOs).
The index,D0, represents just one of the possibilities of constructing proximity measures

in terms of theMi numbers. For further studies of the impact of choosing the proximity
criterion on the form of the generalized BOs obtained let us consider the following measures:

Dk = d−1
d∑
i=1

(M2
i )

2−k k = 0, 1, . . . (13)

Notice that 0< Dk 6 1 for everyk. Let us mention that the index̃D1 =
∑d

i=1Mi has already
been considered as a proximity measure [26].

Taking into account thatMi = (M2
i )

1/2 are eigenvalues of the matrix(M†M)1/2 one can
write: D1 = d−1 Tr(M†M)1/2. In a similar way one can proceed to consecutive values ofk

and re-express theDk index as

Dk = d−1 Tr(M†M)2
−k
. (14)
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The generalized BOs obtained from the requirement

Dk = max (15)

shall be referred to asMPOs corresponding to the proximity measureDk and denote by the
acronym MPO(k).

An alternative definition of proximity indices can be obtained by using the product of
various powers of theMi-numbers [26], e.g., for the first power we have

P =
d∏
i=1

Mi. (16)

Since, for all powers ofMi the orbitals maximizing their products are the same, we shall
confine our considerations to the index given by

P = max (17)

which will be referred to asMPOs corresponding to the proximity measureP and denoted by
the acronym MPO/P.

To explicitly relate theP -index with the matrixM let us take into account thatMi are
eigenvalues of the matrix(M†M)1/2, i.e., there exists a unitary matrixU such that

(M†M)1/2 = U−1 diag(Mi)U 0< Mi 6 1. (18)

From this equation one gets

det(M†M)1/2 = (detM†M)1/2 = |detM| =
d∏
i=1

Mi = P. (19)

Hence, the desired index satisfies the equation

P = |detM|. (20)

To define the orbitals of the second category, first we shall formulate the generalization of
the Brueckner condition (3). Notice that in the SR case, this condition is independent from the
normalization conditions imposed on the wavefunction. To define single excitations in the MR
case one has to specify both the wavefunction and reference state considered. This can be most
conveniently performed using the following generalization of the intermediate normalization
condition to the MR case [27]:

〈8i |9̃k〉 = δik (i, k = 1, . . . , d). (21)

The renormalized functions̃9k are obtained from their orthonormal counterparts9i as

9̃k =
d∑
l=1

[M−1]lk9l (k = 1, . . . , d) (22)

whereM is the mixed-overlap matrix (8) representing the coefficients of the reference
determinants in the9l functions, i.e.,

9l =
d∑
j=1

Mjl8j + χl (23)

andχl belongs to the orthogonal complementM⊥0 , of M0. Notice that the renormalized
wavefunctions take the form

9̃k = 8k + χ̃k (k = 1, . . . , d) (24)
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with χ̃k ∈M⊥0 , and can be represented as [27]

χ̃k =
∑
a1,r1

c̃r1a1
(k)(8k)

r1
a1

+ · · · +
∑

a1,...,aN
r1,...,rN

c̃r1,...,rNa1,...,aN
(k)(8k)

r1,...,rN
a1,...,aN

(25)

where(8k)
r1,...,rN
a1,...,aN

denotes the determinant obtained from8k by the replacement of the spin-
orbitalsa1, . . . , as , by the spin-orbitalsr1, . . . , rs .

Note that the MR formulation of the perturbational and coupled-cluster approaches are
consistent with the intermediate normalization condition (23) for the wavefunction9̃k, e.g.,
the c̃ra coefficients are equal to the one-body cluster amplitudes. They also correspond to
the diagrams of Lindgren’s MR perturbation theory [15] which are supposed to vanish in his
method of defining approximate BOs. It seems that these arguments justify our suggestion to
consider as a MR counterpart of the Brueckner condition, the equations

c̃ra(k) = 0 (26)

for k = 1, . . . , d, and all relevant hole and particle states.
Let us denote byck,a→rj the coefficient of the determinant(φk)ra in the FCI expansion of

the wavefunction9j , i.e.,

c
k,a→r
j = 〈(8k)

r
a|9j 〉. (27)

Now the generalized Brueckner condition (26) takes the form

d∑
j=1

[M−1]jkc
k,a→r
j = 0 (28)

for k = 1, . . . , d, and all relevant hole and particle states.
We shall refer to the BOs for which the coefficientsck,a→rj satisfy the equation (28)as multi-

reference-state Brueckner orbitals(MR-BOs). Notice that sets of coefficients corresponding
to different excitationsa→ r from a given determinant8k satisfy the same equation.

2.2. H4 model

Here we present the results of numerical studies for the H4 model [24] in which the trapezoidal
arrangement of the four hydrogen atoms is fully specified by a single parameter,α, defining
the angleφ = απ if the nuclear separation between the nearest neighbouring atoms is fixed (in
our case at 2 au). Continuously varying the parameterα from 0 to 0.5, we proceed from a very
strongly quasi-degenerate regime to an almost non-degenerate situation. Although the model
system considered is relatively small, it is known to epitomize many of the essential difficulties
encountered in quantum-chemical computations. The four MOs of the H4 MBS model are
labelled according to theirC2v symmetry species. One has two orbitals ofa1 symmetry species,
which can be written in terms of Gaussian functionsχk, centred at atomk as

ϕai = cai (χ1 + χ4) + dai (χ2 + χ3) (i = 1, 2) (29)

and two orbitals ofb2 symmetry species

ϕbi = cbi (χ1− χ4) + dbi (χ2 − χ3) (i = 1, 2). (30)

We assume thati = 1 for the orbital corresponding to the lower expectation value of the one-
electron Hamiltonian. Since we are concerned with the three lowest1A1 states, the nodeless
ϕa1 orbital is included in all model-space determinants. The normalization and orthogonality
conditions mean that for each symmetry species all four coefficients in equations (29) and (30)
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Table 1. Orbital parameters for various MR generalizations of BOs and proximity indices obtained
for the pair of states (11A1, 21A1) of the H4 model at various geometries.

α = 0.005 α = 0.05 α = 0.1 α = 0.2 α = 0.5

Orbital parameters:a

1.024 32 1.184 62 1.251 45 1.227 99 1.167 24
MPO(0)

0.992 85 0.953 47 0.949 02 0.968 69 0.964 80
1.024 00 1.180 11 1.233 28 1.162 86 1.053 75

MPO(1)
0.993 03 0.956 10 0.958 79 1.002 36 1.018 57
1.023 84 1.176 65 1.220 35 1.119 43 0.983 77

MPO(2)
0.993 11 0.958 20 0.965 78 1.026 53 1.055 55
1.023 79 1.175 50 1.216 08 1.106 06 0.963 20

MPO(9)
0.993 15 0.958 87 0.968 13 1.034 22 1.067 09
1.023 79 1.175 50 1.216 05 1.105 96 0.963 04

MPO/P and MR-BOs
0.993 15 0.958 87 0.968 14 1.034 28 1.067 18
1.038 1.322 1.506 1.637 1.626

HF
0.983 0.874 0.835 0.804 0.823

Proximity indices:b

D0 0.933 76 0.909 92 0.855 82 0.735 79 0.667 53
D2 0.982 98 0.976 49 0.960 56 0.917 31 0.884 56
D9 0.999 87 0.999 81 0.999 68 0.999 30 0.998 98
P 0.933 61 0.909 00 0.849 81 0.698 84 0.593 98

a See equation (31). For each orbitalxa is listed abovexb.
b For HF orbitals.

can be expressed in terms of a single parameter. For the reference functions employed in this
work it is convenient to use the parameters

xa = da1/ca1 and xb = db1/cb1 (31)

for thea1 andb2 symmetry species, respectively. Varying these parameters in the range(0,∞)
allows one to define a vast variety of orbital sets for the H4 model. It is convenient to represent
every orbital set as a point on the(xa, xb)-plane.

In this work we define the model space,M0, as spanned by two determinants:

81 = |ϕa1ϕa1ϕb1ϕb1| and 82 = |ϕa1ϕa1ϕa2ϕa2|. (32)

3. Comparison of the generalized BOs obtained for H4

Since MR generalizations of the BOs obtained when using various criteria differ among
themselves, it might be interesting to get some information about the size of these differences
and its dependence on the choice of the pairsM0 andM. To this end we have performed
calculations for various geometries of H4. In tables 1 and 2, we present some typical results
for the orbital parameters obtained. Let us notice that the parameters defining the MPO/P and
MR-BOs which are obtained from the conditions (17) and (28), respectively, are identical for
all cases considered. This fact will be justified in the next section. For comparison, orbital
parameters are also given for the ground state HF orbitals. Moreover, to get an idea about
the proximity ofM0 andM for the situations considered, as well as about the usefulness of
various indices in characterizing these proximity, we display some of the indicesDk, defined
by equation (13), and the indexP defined be equation (16).

The results obtained for the pair of subspaces corresponding to the states 11A1 and 21A1

are collected in table 1. From the table, one sees that the MPO(k)s change in a regular way with
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Table 2. Orbital parameters for various MR generalizations of BOs and proximity indices obtained
for the pair of states (11A1, 31A1) of the H4 model at various geometries.

α = 0.1 α = 0.15 α = 0.2 α = 0.5

Orbital parameters:a

12.283 6.800 19 5.176 86 3.462 40
MPO(0)

0.495 50 0.639 72 0.775 38 0.952 63
19.123 6.912 20 5.236 82 3.562 61

MPO(1)
0.480 31 0.638 96 0.775 41 0.958 30

33.146 6.985 31 5.277 43 3.628 71
MPO(2)

0.469 08 0.638 46 0.775 40 0.962 05
42.642 7.007 13 5.288 83 3.648 83

MPO(9)
0.465 74 0.638 32 0.775 40 0.963 12

42.736 7.007 31 5.288 93 3.648 98
MPO/P and MR-BOs

0.465 72 0.638 32 0.775 40 0.963 13
1.506 1.602 1.637 1.626

HF
0.835 0.806 0.804 0.823

Proximity indices:b

D0 0.579 51 0.607 33 0.638 20 0.681 51
D2 0.800 04 0.849 27 0.868 75 0.891 77
D9 0.998 03 0.998 62 0.998 82 0.999 06
P 0.365 04 0.491 70 0.547 07 0.616 22

a See equation (31). For each orbitalxa is listed abovexb.
b For HF orbitals.

increasingk. All the orbitals considered differ very little forα = 0.005, i.e., for the strongest
quasi-degeneracy. When proceeding to greaterα-values the differences between the individual
orbitals increase. This increase is accompanied by a decrease of the values of the proximity
indicesDk. For fixedα, the comparison of the MPO(k)s with MPO(k + 1)s for increasingk
indicates that the largest differences are found when proceeding fromk = 0 to k = 1. These
differences become much smaller for largerk. One can also notice the interesting fact, that
for k = 9, the orbital parameters for MPO(9) differ very little from those of the MR-BOs and
MPO/Ps. As we shall see in the next section, the MPO(k)s fork→∞ become identical with
the latter orbitals. Comparing the various generalized BOs with the HF orbitals, one can see
that, except forα = 0.005, these orbitals differ significantly. TheDk andP indices given
in table 1 are calculated for the HF orbitals. One can see that with increasingk the former
indices disclose a rather fast convergence to the limiting value of one, which is a consequence
of the fact thatMi values in equation (13) take values from the range(0, 1]. Notice that with
increasingk, theDk-indices become an increasingly less sensitive measure of the proximity
of M0 andM. They provide, however, for everyk, the same proximity hierarchy of these
subspaces. The most sensitive proximity indices turned out to beP andD0.

The results obtained for the pair of states(11A1, 31A1) are shown in table 2. Note that
for smallα-valuesM0 andM differ enormously. Therefore, we start the presentation with
α = 0.1. Perusing theDk values one can see that forα = 0.1 some of them take small values.
The proximity improves with increasingα-values, but only forα = 0.5, do theDk indices take
values larger from their counterparts for the pair of states(11A1, 21A1). The results given in
table 2 disclose a similar general behaviour as those of table 1. Again, the differences between
consecutive MPO(k)s decrease with increasing proximity. The differences are especially large
for α = 0.1. Notice again, the closeness of the parameters for MPO(9) and the corresponding
MR-BOs and MPO/P. It is also evident from the table that the HF orbitals do not resemble any
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of the MPO(k)s or MR-BOs. As might be expected, theDk andP indices disclose a similar
behaviour to the(11A1, 21A1) pair.

The results of the calculations can be summarized as follows. (a) The MPO(k)s disclose
systematic changes with varyingk. These changes are most pronounced for small values of
k and, for a givenk, they decrease with increasing proximity ofM0 andM. (b) For large
values ofk the MPO(k)s become very similar to the MR-BOs and MPO/P. (c) The most precise
measures of the proximity of pairs of subspaces are obtained when using the indicesP andD0.

4. Relationship between various MR generalization of the BOs

Now we would like to consider the relationship between various MR generalizations of the
BOs from a more general point of view. Let us start with the comparison of the MPO/Ps and
MR-BOs. Since the former orbitals have to satisfy condition (17), they have, by equation (19),
to fulfill the equation

δ detM = 0. (33)

When evaluating the variation of detM with respect to the variation of the determinant
8i , one can employ the expansion of the determinant with respect to the elements of theith
row and obtain

δ detM =
d∑

j,k=1

〈δ8k|9j 〉M(k, j) (34)

whereM(k, j) denotes the algebraic complement of the elementMik. Taking into account
that [M−1]jk = (detM)−1M(k, j) and that the variationsδ8k of the determinants are caused
by the variationsδϕa of it spin-orbitals, i.e., that

δ8k =
∑
a,r

δ(k)ar (8k)
r
a (35)

with arbitrary coefficientsδ(i)ar , one can re-express equation (33) as
d∑
k=1

∑
a,r

δ(k)ar

d∑
j=1

〈(8k)
r
a|9j 〉(M−1)jk = 0. (36)

Employing equation (27) and setting to zero the coefficients of the individual incrementsδ(k)ar ,
we obtain the set of equations (28). Hence, we have shown that the MPO/Ps obtained from
the requirement (17), satisfy the generalized Brueckner condition and therefore the MPO/Ps
are identical with the MR-BOs.

We now proceed to the MPO(k) orbitals. For convenience we shall assume that the orbitals
considered are real.

Let us start withk = 0. According to equations (15) and (14) the MPO(0)s have to satisfy
the condition

δ TrM†M = 0 (37)

and by equation (11), the variation of the trace ofM†M can be expressed as

δ TrM†M = δ
[ d∑
i,k=1

〈8i |9k〉2
]
= 2

d∑
i,k=1

Mik〈δ8i |9k〉. (38)

Now, when using equations (35) and (27) and setting equal to zero the coefficients of the
incrementsδ(i)ar , one obtains the following conditions to be satisfied by the coefficientsc

(i,a→r)
k

in the FCI expansion of9k defined in terms of the MPO(0)s:
d∑

i,k=1

Mikc
(i,a→r)
k = 0 i = 1, . . . , d. (39)
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From this equation, sets of coefficients corresponding to different excitationsa → r from a
given determinant8k are related in the same way. Notice that it is the essential difference of
these conditions and the generalized Brueckner condition given by equation (28), which may
cause the MPO(0)s and MR-BOs to differ considerably. This is demonstrated in tables 1 and
2 for cases whenM0 andM disclose a relatively small overlap.

We now derive the analogues of equation (39) for the MPO(k)s, wherek > 1, in the case
of two-dimensionalM0 andM spaces. Examples of such spaces are considered in section 3.

According to equations (13)–(15) the MPO(1)s are obtained from the condition

δ Tr(M†M)1/2 = 0. (40)

From equations (10), (18) and (19) we haveM2
1 +M2

2 = Tr(M†M),M1 +M2 = Tr(M†M)1/2

andM1M2 = |detM|. Taking into account thatM1 + M2 = (M2
1 + M2

2 + 2M1M2)
1/2 one

obtains

Tr(M†M)1/2 = [Tr(M†M) + 2| detM|]1/2. (41)

It is convenient to employ the following notation:

A = Tr(M†M) B = |detM| and x = A/B (42)

Now equation (41) can be written as

Tr(M†M)1/2 = B1/2(x + 2)1/2. (43)

The desired variation can be written as

δ Tr(M†M)1/2 = 2−1N−1
1 [δA + 2δB] (44)

where

Nk = Tr(M†M)2
−k

(45)

and the condition (40) takes the form:

δA + 2δB = 0. (46)

Taking into account equations (34) and (38) forδ detM andδ Tr(M†M), respectively, and
inserting the expression (35) forδ8k into the formula obtained, one obtains the desired
equations relating theck,a→rj coefficients, e.g.,

(M11 + σM22)c
1,a→r
1 + (M12− σM21)c

1,a→r
2 = 0 (47)

whereσ = sign(detM).
In a similar way we can obtain analogues of equation (47) for the MPO(k)s corresponding

to k > 1. However, we do not derive the detailed equations, but rather the general form of
the equations representing the optimum condition, i.e., the analogues of equation (46). To
find the general patterns of these equations let us consider the casek = 2. According to
equations (13)–(15) the MPO(2)s are obtained from the condition

δ Tr(M†M)1/4 = 0. (48)

In similar way, as fork = 1, one may obtain the expression for Tr(M†M)1/4:

Tr(M†M)1/4 = [Tr(M†M)1/2 + 2| detM|1/2]1/2 (49)

taking into account equations (43)–(45) one may obtain

Tr(M†M)1/4 = B1/4[[x + 2]1/2 + 2]1/2 (50)

and

δ Tr(M†M)1/4 = 2−2N−1
2 N−1

1 {δA + 2B−1(B +B1/2N1)δB}. (51)
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Emloying the same method fork = 3 one obtains the equations:

Tr(M†M)1/8 = B1/8[[[ x + 2]1/2 + 2]1/2 + 2]1/2 (52)

and

δ Tr(M†M)1/8 = 2−3N−1
3 N−1

2 N−1
1 {δA + 2σB−1(B +B1/2N1 +B1/4N2N1)δB}. (53)

An inspection of equations (43)–(45) indicates that for an arbitraryk > 1, the relevant trace
and its variation take the forms

Tr(M†M)2
−k = Nk = B2−kRk (54)

with

Rk = [. . . [[︸ ︷︷ ︸
k

x + 2]1/2 + 2]1/2 . . .2]1/2 (55)

and

δ Tr(M†M)2
−k = 2−kN−1

k N−1
k−1× · · · ×N−1

1 {δA + 2B−1(B +B1/2N1 +B1/4N2N1 + · · ·
+B2−(k−1)

Nk−1× · · · ×N1)δB}. (56)

According to equations (13)–(15) the MPO(k)s are obtained from the condition

δA + 2SkδB = 0 (57)

where by equations (45), (53) and (54),Sk can be written as

Sk = 1 +R1 +R1R2 + · · · +R1× · · · × Rk−1. (58)

Notice that

lim
k→∞

Rk = 2. (59)

The sumSk increases very quickly with increasingk. As a result, for very large values of
k, the first term in equation (57) can be neglected and this equation becomes equivalent to
condition (33) for the MPO/Ps or MR-BOs. Hence, we have proven that in the limitk→∞,
the MPO(k)s become identical with the MPO/Ps and MR-BOs. This results explain the close
similarity of these orbitals and the MPO(9)s in our calculations for H4 presented in the previous
section.

5. Summary

In this paper we proposed several generalizations to the case of MR-state approaches of the
concept of maximum overlap orbitals or BOs, which have been defined and employed in SR-
state formulation of the many-electron theory. These generalizations can be classified into two
categories. The first one consists of orbitals that yield the maximum proximity of the model
space,M0, spanned byd-determinants8i constructed from these orbitals and the target space,
M, spanned by the set ofd exact wavefunctions9i considered in the MR approach. Due to the
fact that one may use many proximity criteria, this category includes various MPOs. The second
category consists of the set of MR-BOs which satisfy the generalized Brueckner condition,
i.e., the requirement that in the CI expansion of the exact wavefunctions, transformed to the
intermediate-normalization form, there are no singly excited configurations.

For each of the generalized BOs considered, we derived equations relating the coefficients
of singly excited configurations (with respect to the individual8i-determinants) in the CI
expansions of the9i functions defined by the orbitals considered. Relationships between
various MPOs as well as between MPOs and the MR-BOs set have been studied. We
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demonstrated that there are proximity criteria related to the trace of the productM†M, where
M is the mixed overlap matrix for the bases ofM0 andM, which lead to MPOs arbitrarily
close to the MR-BOs. It has also been shown that one can define a proximity criterion in
such a way that the orbitals maximizing the proximity (MPO/P) simultaneously satisfy the
generalized Brueckner condition, i.e., that both criteria define the same set of orbitals. Hence,
for the MPO/Ps we have the same situation as in the SR case, where the analogues of both
criteria define just one set of BOs. Therefore, these orbitals seem to represent the most natural
generalization of the BOs to the MR case. Moreover, the proximity criterion defining the
MPO/Ps, which is related to the determinant of theM-matrix, might be considered as the most
natural analogue of the best overlap criterion defined in the SR case.

To illustrate the detailed structure of the various orbital sets considered and to test the
sensitivity of various proximity measures, we performed numerical studies for the H4 model,
which is commonly used in test calculations of advanced methods of many-electron theories.
It has been demonstrated that, in fact, the criterion employed for the generation of MPO/Ps
provides a very sensitive description of the proximity of the pair of subspaces considered. It
has also been found that generalized BOs differ significantly from the HF orbitals.

We believe that the MPO/P one-electron functions proposed in this paper will be of similar
importance in MR-state approaches to the description of the states of many-electron systems
as the standard BOs in the SR approaches.
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